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On the stability of fully developed flow in a pipe 

By GILLES M. CORCOS AND JOHN R. SELLARS 
The University of California and The Ramo-Wooldridge 

Corporation 

(Received 23 April 1968) 

The stability of infinitesimal axially symmetric disturbances in fully developed 
pipe flow is examined anew. The classical eigenvalue problem is treated in part by 
asymptotic methods and leads to an algebraic relation between the eigenvalue C, 

the disturbance wavelength 27r/a, and the Reynolds number. Examination of 
the limiting cases of this relation reveals the existence of two families of charac- 
teristic numbers, the value of which tends to unity and to zero as the Reynolds 
number increases without bounds. For the latter, a more accurate solution is 
required and given. It is found that all eigenvalues yield stable solutions and 
that for a given wave number and Reynolds number only a finite number of 
eigenvalues exists. 

The limitations of the analysis are discussed in the light of a recent experi- 
mental study of the same problem. 

1. Introduction 
It is generally believed that fully developed flow in a pipe is stable at any 

Reynolds number when it is excited by infinitesimally small axially symmetric 
disturbances. While several authors have considered this problem, the proof of 
stability offered by Sex1 (1927,1928) has served as a standard reference. Arecent 
investigation by Pekeris (19484  points out that certain u priori assumptions 
about the nature of the stability criteria (the eigenvalues) damaged the rigour of 
Sexl’s proof. The same paper gave an independent demonstration of stability. It 
has been shown that Sexl’s work may be criticized on other grounds as well 
(Corcos 1952), and the present paper shows that Pekerid work is incomplete in the 
sense that he only investigated one class or family of modes while two distinct 
classes of modes can be found. These two sets of modes are very similar to those 
found by Pekeris ( 1948 b )  in connexion with two-dimensional Poiseuille flows. 
In  the latter problem, one of the sets is always stable while the other contributes 
the unstable perturbations at some Reynolds numbers. In  our case, as the 
following development will undertake to show, both sets are stable or positively 
damped. 

Nevertheless, the second set of modes deserves to be studied becauseit generates 
the least stable disturbances, because it is germane to the unstable set of the two- 
dimensional problem, and because it corresponds rather well with a set of modes 
which is observed experimentally (Leite 1959). 
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In  the following, the eigenvalues corresponding to any mode are given as func- 
tions of Reynolds number and wavelength, and it is shown that the number of 
modes present (i.e. the number of eigenvalues) is finite and depends for a given 
wavelength of the disturbances upon the Reynolds number. 

2. The formulation of the problem 
Let the mean flow be an axially symmetric pipe flow, and let the disturbances 

be axially symmetric and periodic in the direction of flow, i.e. the stream function 
has a perturbation of the form 

@(x, r, t )  = $(r) eiOrb4). 

Then the appropriate differential equation for the eigen function $ ( r )  (Sex1 1927) is 

( W - c )  $"---a2$ +q5 --w ( : 1 (Y' 1 
Here c = c,.+ic, is the eigenvalue, ct is the wave-number of the disturbance, 
W = W(r)  is the non-dimensional main stream velocity profile, and R = (centre 
velocity) (radius of pipe)/(kinematic viscosity) is the Reynolds number of the 
flow. Primes indicate differentiation with respect to r .  The boundary conditions 
a t  the origin (centre of the pipe) require that the disturbance be axially sym- 
metric and bounded, i.e. 

lim- 4 = 0 and lim- $' is bounded. ( 2 . 2 a )  
r+O r r - to r 

On the walls, the kinematic and no-slip conditions are equivalent to 

$(1) = $'(1) = 0. (2.2b) 

A stable disturbance is characterized by ci < 0,  a neutral disturbance by ci = 0, 
and an unstable disturbance by ci > 0. 

In  general, the differential equation ( 2 . 1 )  will have four linearly independent 
solutions. The method of approach adopted herein will enable us to eliminate 
immediately those solutions which are not sufficiently regular near the origin. 
The remaining two solutions we will denote by $i and Then the appropriate 
solution may be written as a linear combination of $i and 

Applying the boundary conditions (2 .2) ,  we will obtain two homogeneous equa- 
tions for the constants C, and C,. In  order for a non-trivial solution to exist, the 
determinant of the coefficients C, and C, must vanish. We thus obtain 

This equation gives the functional dependence of c on a and aR and thus indicates 
for what Reynolds number, if any, disturbances will grow in time. 
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3. The determination of the 'inviscid' solutions 

written conveniently as 
For PoiseuiUe flow, W ( r )  = 1 -r2,  and the differential equation (2.1) may be 

1 
r f "--f' - aY-iaR( 1 - r2- c ) f  = 0, 

(3.2) 
where $fLT+f) 9' = f. 

This form has been previously utilized by both Sex1 and Pekeris. 

Bessel functions of order unity, of the first and of the second kind, i.e. 
Clearly f = 0 is a solution of (3.1); substituting in (3.2) we obtain 9 in terms of 

q51 = rJ1 (iar), (b2 = ?.q (iar). (3.3) 

These are two linearly independent exact solutions of (2.1), and they are usually 
referred to  as the inviscid solutions, since they are solutions of the perturbation 
equation for R = co. The second solution $z is rejected immediately in conformity 
with the boundary conditions at the origin, and thus we obtain 

q5i = rJ, (ia9.). (3.4) 

4. The determination of the second independent solution 
Equation (2.1) has power series solutions which are convergent throughout 

the interval 0 < r < 1. However, these solutions converge very slowly because 
positive powers of aR (a large number) occur as coefficients in the series. This 
type of expansion is therefore of little use to us for an explicit solution. Instead, 
we resort to an asymptotic development due to Heisenberg. We look for a solution 
of the form 

and we assume that for large enough values of aR we can express g by the 

q5 = eg, (4.11 

asymptotic series 
g = (aR)mgo+gl+(aR)-mg,+ .... 

Substituting (4.1) and (4.2) in (2.1) and equating coefficients of equal powers of 
aR, we find that 

n = +; go = & &(W-c)]dv; g, = log- 

Making use of the first and second approximations only, we write 

r+ s:. (W-C)%' 

where 

7-2 
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and where the ratio AIB will now be determined around the origin by comparing 
#a with a regular (viscous) solution valid in the neighbourhood of r = 0. 

We note that iaR(1 -r2-c)+iaB(1 - c )  for small values of r.  Making this 
approximation in (3.1), and neglecting a2 compared to aR, we can write the 
solution of (3.1) directly in terms of Bessel functions of order one. Thus 

f = hrJ,(iyr) + hY,(iyr), 

#u = h,rJ,(iyr) + l,rY(iyr) 

(4.4) 

where y = {iaR( 1 - c)}* and h and I are constants. From (3.2), this gives directly 

(4.5) 

The boundary conditions a t  the origin require that I, be zero, and thus 9, must 
provided y $. a, which will always be true in any of the cases of interest. 

be represented near the origin by 

#, = hlrJ1(iy).  (4-6) 

Even though this representation is restricted to small values of r ,  if aR is suf- 
ficiently large, we may make yr large enough to use the asymptotic form of the 
above Bessel function. Then we have 

#, = h,r$[exp { - (iaR( 1 - c))& r + $77;) + exp { + (iaR( 1 - c) ) * -  $741, (4.7) 

provided -77 < argi(iaR(1- c)}& < 277. 

On the other hand, if r, = 0, (3.3) becomes for very small r (bounded from zero) 

#u = d( 1 - c)-$ [A,  exp { + (iaR( 1 - c))& r }  + B exp { - (iaR( 1 - c))& r ) ] ,  (4.8) 

where the notation A,  and B, is intended to indicate that r, in (4.3) is taken as 
zero. A comparison of (4.8) and (4.7) gives 

A,  _ -  . 
Bo 

- 2 .  (4.9) 

The ratio A / B  has now been evaluated so that #, corresponds to the solution 
with the proper behaviour near the origin, but we must impose certain restrictions 
upon the use of (4.3) with (4.9). First, it is clear that (4.3), an asymptotic approxi- 
mation for large aR, fails at  r = 0; although it is valid (in the sense of being a good 
approximation) arbitrarily close to r = 0 for sufficiently large aR. This point will 
be dealt with later. Then since (4.3) contains a singularity for W = c, which is a 
regular point of the differential equation (2. l),  the asymptotic representation fails 
there also. Finally, we should not expect the ratio A / B  as found in (4.9) to remain 
the same for the whole interval, particularly in the neighbourhood of the singu- 
larity W = c. The reason can be set forth as follows. Our asymptotic representa- 
tion must be single-valued if it is to approximate an exact solution of (2.1). On 
the other hand, the functions x+ and 2- have branch cuts and are multi-valued 
functions of the complex argument r .  

Thus a single linear combination of x+ and x- would yield a non-unique 
solution. On the other hand, it is possible to chose the coefficients of x+ and x- 
corresponding to various parts of the complex r plane in such a manner as to 
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satisfy the two requirements that we must place upon the solution: (a )  that it be 
unique; ( b )  that it be continuous, or at least that discontinuities in the solution be 
of the order of the errors made by an asymptotic approximation. 

The question is examined in detail in the Appendix. The need to modify the 
linear combinations of asymptotic solutions here and there (in our case on three 
discrete lines) was first described by Stokes, and the lines on which solutions are 
connected to each other are termed the Stokes lines. 

;t 
I 

I 
Region I I1 

FIGURE 1. The complex r-plane and the Stokes regions. 

The Appendix shows that Stokes lines originate at  the complex value of r for 
which W = c,  that they divide the complex r plane into three regions (figure l), 
and that we should expect r = 0 to be in Region 111 and r = 1 to be in Region I. 
Furthermore, the connexion formulae taken together with (4 .9)  yield 

3 = i [ l - e ~ ] ,  (4.10) 

where .J{iaR( W - c ) }  dr = eQni(aR)t ink2, (4 .11)  

BI 
3 = i [ l - e ~ ] ,  (4.10) 

where .J{iaR( W - c ) }  dr = eQni(aR)t ink2, (4 .11)  

BI 

with k2=1-Cc. 

5. The eigenvalue equation 
Henceforth in evaluating integrals of the type 

1; J{iaR( W - c)} dr and J{iaR( W - c ) }  dr :  l 
we shall choose our arguments in conformity with the convention adopted when 
we defined the Stokes regions (see Appendix). Proceeding with this in mind, we 
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may write the determinant (2.4) explicitly. We thus obtain an algebraic eigen- 
value equation. Simplifying a little, we get 

where 

and where we have taken 

- m  < arg(c) < m and - r r  < argk < n. 
The solution of (5.1) will determine c as a function of a and of aR. 

Equation (5.1) has to be solved by trial and error for any value of a: and aR, and 
a representative tabulation would be very time consuming. However, the im- 
portant conclusions can be drawn without resorting to extensive numerical work. 
It is sufficient to note the general behaviour of the eigenvalues and to develop 
formulae for the interesting limiting cases. 

We shall successively assume that c is non-vanishing as a R + a  and that 
c + 0 as aR -+ 00, and we shall thus get two different limiting representations for 
the eigenvalues. These representations we shall call families of eigenvalues. 

6. The first limiting form 
Let us first assume that c is non-vanishing as aR -+ co. Then for large ctR the 

right-hand side of (5.3) is approximately - i, while the term exp (P) grows very 
large. Thus the term (1 - eQ)  must be very nearly zero. We have for this case 

eQ = 1, 

Q - 2nNi, 

It is seen that all values of c given by (6.1) correspond to damped disturbances. 
We have taken only positive values of N in (6.1) because negative values would 
give values of c which are inconsistent with our connexion formulae. 

The family of eigenvalues given by (6.1) requires that c + 1 as aR -+ 00. As a 
consequence, the Stokes point approaches the boundary r = 0 for increasing 
values of aR and the following question should be raised. Is the matching of our 
asymptotic solutions with Bessel functions in the neighbourhood of the origin 
legitimate? In the neighbourhood of the origin the argument of the Bessel 
functions used is i(iaR( 1 - c))i r .  The question is whether there is in Region I11 
a neighbourhood of r = 0 for which the argument is large enough to justify the 
use of asymptotic expansions. Substituting for c from (6.1), we get for the 
representation in the neighbourhood of the origin 
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where E is a constant. Now it is true that r = 0 is, in addition, only a distance of 
order (aR)-gaway from the Stokes point. However, useis made of the asymptotic 
expansions not at r = 0 but in a neighbourhood of it which can be chosen for con- 
venience anywhere in Region I11 provided that in this neighbourhood r < 1, 
say, Irl % (aR)-). It is therefore evident that the matching to the Bessel function 
at the origin can always be made even for the family of eigenvalues (6.1), pro- 
vided aR is large enough. In  addition, an obvious restriction to the use of (6.1) is 
that 4N < aR, so that only a relatively small number of modes is given with 
accuracy by (6.1). 

Pekeris (1948a) derived an equation identical to  (6.1) to  the proper order of 
approximation by an independent method.' However, this method did not 
yield the other family of eigenvalues, namely, that for which c --f 0 as aR -+ 03. 

This is the case to which we now turn. 

7. The second limiting form 
For small c we find that 

P r +(aR)*c8e-Bi", 

and note that e Q + O  as a R + m  

Defining S = (2iaR))~, 

we are able to write the eigenvalue equation in the following form: 

exp ($. -& ] = - i  (i2gSS-5) 
i 2 W  + 5 

This leads to the formula 

J 2  B = arc tan - 6%. 
5 

where 

There are discrete values of S corresponding to the various modes; and as S in- 
creases, 401;. rapidly tends to 2, so that for the higher modes 

[37T(4N + l)]+. 
1 

2( 2iaR)) 
C =  

Again, we see that we have a set of eigenvalues corresponding to damped disturb- 
ances. We must again restrict the value of N in (7.1) so that IcI < 1. Figure 2 
now gives an approximate picture of the eigenvalues in the complex c-plane for 
a given value of aR. At each end of the interval there are a finite number of 
eigenvalues described by (6.1) and (7.1). In between we cannot simplify the 
eigenvalue equation, but a few numerical computations at given Reynolds 
numbers suffice to give the behaviour of the solution. The results indicate that in 
the middle region there is again a finite number of eigenvalues. The actual number 

* Pekeris' third term (1948a, equation (44)) is of the order of (aa/aR) and can be 
obtained by the present method if one proceeds as above after defhing in (2.1) and (3.1) 
a quantity c = c + iaa/uR, instead of neglecting ua compared to iaR. 
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of solutions possible for a given Reynolds number and a given wave-number is 
relatively small but increases, of course, as aR increases. For instance, there are 
about eighteen eigenvalues for aR = 10,000. 

Thesamesort ofobjectioncan bemade to (7.1) as was made to (6.1). Thestokes 
point approaches the boundary r = 1 as R -+ CO; hence, is the asymptotic repre- 
sentation valid? Here the objection is more serious, and a little reasoning (Corcos 
1952, p. 25) shows that the argument of the asymptotic expressions is, at least for 
lower modes ( N  small), of the order of unity no matter how large aR is. Therefore, 
we will now obtain a more accurate representation of the family for which c -+ 0. 

FIUURE 2. ci vs cr, for aR = 10,000. 

8. Expansion in terms of a convergent series 
We will attempt to connect the preceding work with an alternate development 

which should give a more accurate representation of the viscous solution when 
the boundary is in the immediate vicinity of the Stokes point. We will use a 
notation suggestive of the corresponding quantities in the work of Lin (1945) in 
order that some of his results may be utilized. 

We will first translate our origin of co-ordinates to the wall so that the slope of 
the velocity profile will be positive near the wall to correspond to the convention 
used in plane Poiseuille flow. We define 

y =  1-r. 

yk = 1-k. 

€7 = (Y-Yk) 

Thus, the Stokes point is given by 

Further, following Lin, we take 

and 
( W - c )  = W;vE++7€)2+ W; ..., 

where E = (aR)-*. We then express (3.1) in terms of 7 and look for a solution of 
the form 

We find that #,, satisfies the differential equation 

# = # o + € # 1 + E 2 # 2 +  ... . 

-i& = w;q#”. 
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The viscous solutions are given by the particular solutions (Lin 1945; equation 
(4.9)) 

and 

where 

and H k 2 ’  represent Hankel functions of the first and second kind of order one- 
third. Our problem is to connect these solutions with the asymptotic viscous 
solutions. For small values of c we have seen that eQ is very small. If eQ is taken 
as being exactly zero, we have in Region I (near the wall) 

We may ask what combination corresponds to this in Region 111. From (8 .2)  we 
take B, = iA, in the connexion formula (4.1 l), which yields 

A111 = A,, BIII = 0. 

This shows that near the Stokes point only one of the viscous terms in Region I11 
has significance. We then have 

for r near the Stokes point in Region 111. Near the Stokes point this solution may 
be rewritten approximately as 

$a = const. x ~. 
e%i(iaov)* 

72 

Similarly, as given by (8.1) may be expressed asymptotically for large values 

of 7 by efi(iaod 
43 = const. x ~. 

So it can be seen that the viscous solution is expressed (to the proper order of 
approximation) by $3. Since q53 is analytic in the region about the Stokes point it 
must represent the solution everywhere in that neighbourhood. In particular, 
it is valid on the boundary, and we may formulate our eigenvalue determinant 
in terms of this solution and the inviscid solution rJl(iar). 

72 

9. An alternative determination of the eigenvalues 
Writing the eigenvalue problem in terms of q53 leads us to the expression 
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where z = (1 - k )  (aR)* (2k ) )  and P(z) is the Tietjens function 
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which has been tabulated by Tietjens and by Lin for real values of z corre- 
sponding to neutral disturbances. Since 

J1( ia)/ [d/dr{rJ(iar)}lp=1 

is real and positive for all values of a, a neutral disturbance would require that 
P(z) be real and positive for z positive. According to the tabulation of P(z) given 
by Lin (1945, p. 140), this can only occur at z = 2.5, P(z) = 0.51. These values 
substituted in (9.1) are found to require a to  be of the order of (aR)). For this case 
the whole treatment is invalid. However, the work of Synge (1939) indicates 
that very short wavelength disturbances can be expected to be stable from energy 
considerations. Thus, we conclude that there is no neutral disturbance. A very 
interesting and significant comparison can be made between this family of 
eigenvalues and those of Couette flow. The inviscid solutions for Couette flow are 
sinhay and coshay. Using these, Lin's formula (1945, equation (6.13)) becomes 

(9 .2)  
sinh a cosh a (k)y=o = --ZaG- ($!jYEI G a G *  

If we look for solutions of this equation for which c is small, the second right-hand 
term can be neglected since 

(9) = O[(aR)-*]. 
4 y=l 

The resulting eigenvalue problem 

(9.3) 
$do) sinh a -- 
$20) - - [d/dY(sinhaY)l,=l 

is remarkably similar to equation (9.1). This means that Couette flow has one set 
of modes given by an equation similar to equation (7.2). Another set of modes will 
be found for which c -+ 1 as aR -+ co. These two sets correspond to the dominance 
of the term 

or the term 

rn' 

respectively in equation (9.2). For c in the middle region, these terms are of equal 
importance and the whole equation must be considered. The eigenvalues are 
given qualitatively by a figure similar to figure 2,  but are symmetrical about 
c = +. We may now determine the eigenvalues of both Couette flow and pipe flow 
for which c -+ 0 as aR -+ co, using the Tietjens function. Since the terms involving 
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the wave number are independent of aR and c, F(z)  must grow large without 
bounds if y - yk + 0. This happens when z satisfies the equation 

where for Poiseuille flows 

z = [ 1 - .J( 1 - c ) ]  ( 1  - C)+ 2+(aR)+, 

z = c(aR)). and for Couette flows 

Equation (9 .4)  gives a discrete set of values for z, which we will denote by z,. 
These zeros lie in pairs which are very nearly reflexions in the ray (argz) = in. 
The first pair is approximately 

21,2 - - 4.23e(-&n*&n)i, (9.5) 

a result obtained by a numerical integration using tabulated values of the inte- 
grand (Furry 1945). Other values are 

6.&,(-6"*12')i, z5,6 - - 9.  5e(-4n f 8 3  {. 
23,4 = 

The most critical of these values, zi = 423e-Ani,  was checked on a differential 
analyser; the others are only rough estimates. Figure 2 is a plot of the eigenvalues 
corresponding to aR = 10,000 and belonging to both families (i.e. the family 
c + 0 as aR -+ 00 obtained by integrating (9 .4)  and the family c -+ 1 as aR -+ co 
given by (6.1)). In  the region where the two families join, neither representation is 
accurate, and the complete equation (5.1) should be used. Nevertheless, figure 2 
illustrates quite well the fact that there exists only a finite number of modes for 
any aR. 

It is interesting to note that for the first few modes an asymptotic formula such 
as the one given by Hopf (1914) in the case of Couette flow is very inaccurate. 
For n > 6 the roots of (9.4) are given to sufficient accuracy by the asymptotic 
equation 

3.03 
l 2  0.853 

exp {ge-an 24 - - exp { - Qe-tinz# - ~ L n i )  + -- 2% e+W = 0, 

in > (arg z )  > - Qn. 
z1 = 4-23e-Ani = { 1 - J( 1 - c)> ( 1  - c)gz*(aR)+ 

(9 .6)  

(9 .7 )  Thus 

yields the most critical value of c,  that which corresponds to the least damped 
solution. The results, calculated by means of (9 .7)  are compared to corresponding 
values from a differential analyser (Corcos 1952) in figure 3. Unfortunately, it 
was not possible to operate the analyser above aR = 1250, and thus (aR)) cannot 
be said to be extremely large for this case. Nevertheless, the results agree 
surprisingly well. The small amount of scatter in the computer data should be 
charged to the computer itself. 

The close concurrence between the results of the differential analyser and the 
analytical formula (9.7) derived above give considerable confidence in the 
accuracy of the asymptotic methods. At low Reynolds numbers, the problem 
lends itself especially well to study with a differential analyser. It was noted in 
the course of the computer study that there were few eigenvalues corresponding 
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to a given value of a and aR, and that the solutions yielded large decays in time. 
It was also clear from the character of the solutions of the differential equations 
that none would meet the boundary conditions with a negative value of ci 
(corresponding to an unstable eigenvalue). 

Thus it must be concluded that Poiseuille flow damps infinitesimal axially 
symmetric disturbances of the type assumed here. 

0.8 

Differential analyser data 
0 , a  = o  
x , a  = 0 5  
0 ,  a = 1.0 
b ,  a = 2 0  

0.2 -c, Equation(8.7) 

001 I t I 
9 0  9 5  ID0 10.5 

10. Conclusions 
The purpose of a stability analysis is to provide information about the pheno- 

menon of transition from a laminar flow to a turbulent one. In  recent years it has 
been more fully realized that while the small-disturbance theory has a legitimate 
basis in fact (Schubauer & Skramstadt 1947; Liepmann 1943; Laufer 1956), it 
plays only a fragmentary role in the description of transition. 

To begin with, if the oscillations grow, they eventually reach an amplitude 
beyond which linearization of the equations of motion is inadmissible. At this 
point we lose even qualitative information about the further development of the 
disturbances. They may grow, settle at some finite amplitude or decay. They may 
appear as localized turbulent spots or spearheads (Emmons 1951; Schubauer & 
Klebanoff 1955; Rotta 1956), and these may or may not spread. Here an entirely 
different type of analysis seems to be required to describe the spatial growth of 
a b i t e ,  even fully developed disturbance rather than the temporal growth of am 
infinitesimal one. Finally, even when small disturbances are guaranteed not to 
grow within a region of flow, disturbances of finite (but not necessarily large) 
amplitude may be ‘imported’. The free stream turbulence of a wind tunnel may 
induce in boundary layers oscillations large enough to invalidate the conclusions 
of a small-disturbance analysis. In the problem which occupies us, finite dis- 
turbances may very well propagate downstream from the entrance of the pipe. 
There are good grounds (Tatsumi 1952) for believing that, for some Reynolds 
numbers, as the boundary layer grows on the walls of the pipe entrance, it is 
capable of amplifying infinitesimal disturbances before they reach the down- 
stream portion of the pipe where fully developed parabolic flow prevails. Are we 
able to deduce from the analysis presented here that contamination from upstream 
is indeed the only means by which disturbances in a pipe can acquire a finite 
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amplitude? Unfortunately, this analysis taken by itself does not justify such 
strong conclusions. On the other hand, a recent set of experiments performed by 
Leite (1959) on fully developed pipe flow usefully complements the analysis. 

There are three main reasons why one might hold that the small-disturbance 
analysis of fully developed pipe flow is incomplete. 

( a )  Axially symmetric disturbances have been assumed. This is an arbitrary 
albeit necessary restriction designed to permit separation of variables. No 
analytic considerations have been advanced to bolster the hope that asymmetric 
disturbances behave as symmetric ones do. However, Leite (1959) purposely 
introduced small disturbances with no symmetry. They became more axially 
symmetric as they progressed downstream. Thus the asymmetric part of the 
disturbances decayed faster than the symmetric part. 

( b )  It has been pointed out that the analysis yields a finite set of eigenvalues 
and hence of eigenfunctions for any given value of ct and of aR. This means that 
arbitrary initial disturbances which are held to satisfying continuity cannot be 
represented as we have assumed by a sum of elemental solutions of the form 

$(r, x, t )  = $( r )  eiax. 

where f ( r ,  R) is an arbitrary continuous function of r subject to our boundary 
conditions, cannot be represented in the analysis since, according to our results, 
f ( r )  can only be the linear combination of a finite number of eigenfunctions, i.e. 

For instance, $initial = f ( r ,  R) cos a1 X, 

Leite found that the rate of decay for the disturbances he introduced was given 
with relatively good accuracy by the present analysis. This would seem to indicate 
that the rates of decay are not very sensitive to the form of the disturbance so 
long as its amplitude is small. 

(c) Finally, in the analysis disturbances are assumed periodic for 

-a3 < x < m. 

This is only one class of perturbations. For instance, disturbances introduced by 
a small roughness on the wall or artificially as in Leite’s pipe occur, instead, at  
a given downstream section. If they are heavily damped or heavily amplified, 
say if the amplitude varies appreciably in one wavelength, the distinction may be 
important. This criticism naturally applies also to the study of boundary layer 
stability. One should perhaps not expect as good agreement between theory and 
experiment when the decay or amplification rates are large as say for the deter- 
mination of a neutral curve. For pipe flows, since the experiments suggest heavy 
damping, it might be instructive to analyse the problem anew with disturbances 

$(T,  x, t )  = $( r )  e-ux+iwt, of the form 

where Y is complex and w is real. 
Leite’s experiments and the present work taken together do not amount to 

a proof that small disturbances cannot grow in a fully developed pipe flow, but 
they provide a very strong indication that this is the case. 
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Appendix 
The Xtokes phenomenon 

Since, in general, the point W = c corresponds to a complex value of T ,  we shall 
extend r into the complex domain by analytic continuation, and we shall make 
use of the fact that a true (i.e. exact) solution of (2.1) is single-valued analytic and 
continuous at  and around the 'Stokes point' W = c. This avoids the indeter- 
minacy introduced with the asymptotic solutions. The following development 
which is related to some of Langer's work is essentially due to Furry (1947), and 
the general approach is known as the W.K.B. method. 

Let W = c when T = k and define 

Then if ( r  - k) = /3, we have in the close neighbourhood of k 

U = l r k , , / { - i ( 2 k ) / 3 } d / 3  = & / ( - 2 i k ) @ .  

We seek the lines in the complex plane for which U is a pure real number. If we 
define arg (i) = +n, the approximate expression for U above shows that at  least 
in the vicinity of k these lines are such that 

arg /3 = - an + $Nn + arg J k .  

That is, there are three such lines which make 120" angles with each other near 
the Stokes point (figure 1). Away from the Stokes point these lines will be curved, 
because the approximation for U above will not hold for /3-large. The sign of 
U alternates from line to line, so that for a given line it depends on the number of 
revolutions around the point k. These lines will be designated as the Stokes lines. 
In  a similar way, U is purely imaginary near the Stokes point on lines such that 
arg (p) = in + $Nn + arg Jk. As one proceeds out along a Stokes line the ex- 
ponential terms exp [J(aR) U ] ,  exp [ - J(aR) U] in the asymptotic expressions 
become either very large or very small depending on the sign of U associated with 
that line. This a consequence of the assumption that aR is a large number. Thus, 
if we were to traverse the /3-plane in such a manner as to cross Stokes lines, we 
would successively see the coefficient of A in (4.3) become much larger than the 
coefficient of B, then the coefficient of B overpower the coefficient of A, etc. When 
one is on a Stokes line, the small exponential term is in fact smaller than the order 
of approximation of the asymptotic representation. On the other hand, on the 
lines of pure imaginary U ,  the coefficients of A and B have precisely the same 
magnitude. It is apparent from this observation that if we need to change our 
coefficients A and B within the interval, the proper place to modify them will 
be on the Stokes lines. There the coefficient of the small term could be modified 
without materially altering the value of the sum of the two asymptotic expres- 
sions, and thus without introducing a discontinuity in the representation. 

We now inquire whether the original ratio AIB need be modified within the 
interval (0 < r < 1). We define the Stokes lines and the lines of pure imaginary 
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U as shown in figure 1. Further we choose U > 0 on S,, hence U < 0 on S,, 
U > 0 on S,, for the first revolution; and U < 0 on S; after one complete revolu- 
tion from S,. If the asymptotic solution (4.3) is represented in Region I by 

it can be represented in any Stokes region by a linear combination of the two 
terms. Thus 

where a, b ,  c ,  d are constants. However, the continuity of our representation 
requires that the coefficient of the small term only be modified on the come- 
sponding Stokes lines. Therefore, according to our convention we have 

A,, = A,, 

BII = B1+ aAI, 

A111 = A,, +P% = A,  + [Bl + "-411 P, 
B,,, = B,, = B,+aA,, 

A; = A,,, = A,+p[B,+aA,],  

B; = B,,, + yA,,, = B, + ah, + ?{A, +p[B, + aA,]). 

and at the initial Stokes line after a full revolution counterclockwise 

On the other hand, after one revolution A has become the coefficient of the small 
term, B that of the large term, and the argument of the expression ( W - c)% has 
gained an angle 5n/2.  For the solutions on A ,  and A; to be the same requires that 

A; = iB,, 
B; = iA,. 

All the above relations will be compatible only if 

a = p = y = 2 .  (A 1) 

The present arguments show that for the representation to be continuous, one 
of the constants A or B must be modified every time a Stokes line is crossed. This 
property is known as the Stokes phenomenon. We now have a series of connexion 
formulae which permit us to evaluate this discontinuity in A and B on the Stokes 
lines. Which connexion formula will be used depends on the Stokes regions within 
which the end points r = 0 and r = 1 fall, and thus on the eigenvalue yet to be 
found. Once an arbitrary decision is made, it can be checked a posteriori; i.e. it is 
a correct choice only if it yields eigenvalues consistent with the assumptions. 
There are obviously nine cases to be considered, but it is now a simple matter to 
determine which is acceptable. One is guided partly by the expectation that the 
phase velocity of the disturbance (c,) is positive and less than the maximum 
velocity of the main flow: 0 < c, < 1. This suggests that r = 0 is eitherinRegion 
I1 or 111. A systematic investigation by the authors indicated that eigenvalues 
existed only if they were such that r = 0 belonged to Region I11 and r = 1 to 
Region I. For this case our connexion formulae yield 

A ,  = iB,, + A,,,, B, = - iAI,,. (A 2) 
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If A,,, and BIII are known, A ,  and B, are given by (A2) and hold from the 
neighbourhood of the singularity to the wall. According to equations (4.9) and 
(4.3), reversing the order of integration, and changing the lower limit of integra- 
tion, we find that 

A ,  = C,[exp (zni) x-(k, 0) - i exp ( - @i) x+(k, O)], 

B, =C,[-iexp($ri)~-(k,  O)], (A 3) 

where C, is a constant. 
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